Cellular Resolutions of Cohen-macaulay Monomial Quotient Rings
نویسنده
چکیده
We investigate monomial labellings on cell complexes, giving a minimal cellular resolution of the ideal generated by these monomials, and such that the associated quotient ring is Cohen-Macaulay. We introduce a notion of such a labelling being maximal. There is only a finite number of maximal labellings for each cell complex, and we classify these for trees, partly for subdivisions of polygons, and for some classes of selfdual polytopes. 2000 MSC : Primary 13D02. Secondary 13F55, 05E99.
منابع مشابه
. A C ] 1 0 A pr 2 00 9 KOSZUL INCIDENCE ALGEBRAS , AFFINE SEMIGROUPS , AND STANLEY - REISNER IDEALS
We prove a theorem unifying three results from combinatorial homological and commutative algebra, characterizing the Koszul property for incidence algebras of posets and affine semigroup rings, and characterizing linear resolutions of squarefree monomial ideals. The characterization in the graded setting is via the Cohen-Macaulay property of certain posets or simplicial complexes, and in the mo...
متن کاملTopological Cohen–Macaulay criteria for monomial ideals
Scattered over the past few years have been several occurrences of simplicial complexes whose topological behavior characterize the Cohen–Macaulay property for quotients of polynomial rings by arbitrary (not necessarily squarefree) monomial ideals. It is unclear whether researchers thinking about this topic have, to this point, been aware of the full spectrum of related developments. Therefore,...
متن کاملMonomial Ideals and Duality
These are lecture notes, in progress, on monomial ideals. The point of view is that monomial ideals are best understood by drawing them and looking at their corners, and that a combinatorial duality satisfied by these corners, Alexander duality, is key to understanding the more algebraic duality theories at play in algebraic geometry and commutative algebra. Sections written so far cover Alexan...
متن کاملCohen–macaulay Quotients of Normal Semigroup Rings via Irreducible Resolutions
For a radical monomial ideal I in a normal semigroup ring k[Q], there is a unique minimal irreducible resolution 0 → k[Q]/I → W 0 → W 1 → · · · by modules W i of the form ⊕ j k[Fij ], where the Fij are (not necessarily distinct) faces of Q. That is, W i is a direct sum of quotients of k[Q] by prime ideals. This paper characterizes Cohen–Macaulay quotients k[Q]/I as those whose minimal irreducib...
متن کاملResults on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module
Let be a local Cohen-Macaulay ring with infinite residue field, an Cohen - Macaulay module and an ideal of Consider and , respectively, the Rees Algebra and associated graded ring of , and denote by the analytic spread of Burch’s inequality says that and equality holds if is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of as In this paper we ...
متن کامل