Cellular Resolutions of Cohen-macaulay Monomial Quotient Rings

نویسنده

  • GUNNAR FLØYSTAD
چکیده

We investigate monomial labellings on cell complexes, giving a minimal cellular resolution of the ideal generated by these monomials, and such that the associated quotient ring is Cohen-Macaulay. We introduce a notion of such a labelling being maximal. There is only a finite number of maximal labellings for each cell complex, and we classify these for trees, partly for subdivisions of polygons, and for some classes of selfdual polytopes. 2000 MSC : Primary 13D02. Secondary 13F55, 05E99.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. A C ] 1 0 A pr 2 00 9 KOSZUL INCIDENCE ALGEBRAS , AFFINE SEMIGROUPS , AND STANLEY - REISNER IDEALS

We prove a theorem unifying three results from combinatorial homological and commutative algebra, characterizing the Koszul property for incidence algebras of posets and affine semigroup rings, and characterizing linear resolutions of squarefree monomial ideals. The characterization in the graded setting is via the Cohen-Macaulay property of certain posets or simplicial complexes, and in the mo...

متن کامل

Topological Cohen–Macaulay criteria for monomial ideals

Scattered over the past few years have been several occurrences of simplicial complexes whose topological behavior characterize the Cohen–Macaulay property for quotients of polynomial rings by arbitrary (not necessarily squarefree) monomial ideals. It is unclear whether researchers thinking about this topic have, to this point, been aware of the full spectrum of related developments. Therefore,...

متن کامل

Monomial Ideals and Duality

These are lecture notes, in progress, on monomial ideals. The point of view is that monomial ideals are best understood by drawing them and looking at their corners, and that a combinatorial duality satisfied by these corners, Alexander duality, is key to understanding the more algebraic duality theories at play in algebraic geometry and commutative algebra. Sections written so far cover Alexan...

متن کامل

Cohen–macaulay Quotients of Normal Semigroup Rings via Irreducible Resolutions

For a radical monomial ideal I in a normal semigroup ring k[Q], there is a unique minimal irreducible resolution 0 → k[Q]/I → W 0 → W 1 → · · · by modules W i of the form ⊕ j k[Fij ], where the Fij are (not necessarily distinct) faces of Q. That is, W i is a direct sum of quotients of k[Q] by prime ideals. This paper characterizes Cohen–Macaulay quotients k[Q]/I as those whose minimal irreducib...

متن کامل

Results on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module

Let  be a local Cohen-Macaulay ring with infinite residue field,  an Cohen - Macaulay module and  an ideal of  Consider  and , respectively, the Rees Algebra and associated graded ring of , and denote by  the analytic spread of  Burch’s inequality says that  and equality holds if  is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of  as  In this paper we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008